Minimal unavoidable sets of cycles in plane graphs
نویسندگان
چکیده
منابع مشابه
Unavoidable and Almost Unavoidable Sets of Words
A set of words over a finite alphabet is called an unavoidable set if every word of sufficiently long length must contain some word from this set as a subword. Motivated by a theorem from automata theory, we introduce the notion of an almost unavoidable set and prove certain asymptotic estimates for the size of almost unavoidable sets of uniform length.
متن کاملUnavoidable induced subgraphs in large graphs with no homogeneous sets
An n-vertex graph is prime if it has no homogeneous set, that is a set X of vertices (2 ≤ |X| ≤ n − 1) such that every vertex not in X is either complete or anticomplete to X. A chain of length t is a sequence of t+ 1 vertices such that for every vertex in the sequence except the first one, its immediate predecessor is its unique neighbor or its unique non-neighbor among all of its predecessors...
متن کاملUnavoidable Sets of Partial
The notion of an unavoidable set of words appears frequently in the fields of mathematics and theoretical computer science, in particular with its connection to the study of combinatorics on words. The theory of unavoidable sets has seen extensive study over the past twenty years. In this paper we extend the definition of unavoidable sets of words to unavoidable sets of partial words. Partial w...
متن کاملOn cycles in intersection graphs of rings
Let $R$ be a commutative ring with non-zero identity. We describe all $C_3$- and $C_4$-free intersection graph of non-trivial ideals of $R$ as well as $C_n$-free intersection graph when $R$ is a reduced ring. Also, we shall describe all complete, regular and $n$-claw-free intersection graphs. Finally, we shall prove that almost all Artin rings $R$ have Hamiltonian intersection graphs. ...
متن کاملUnavoidable Sigma–Porous Sets
We prove that every separable metric space which admits an `1tree as a Lipschitz quotient, has a σ-porous subset which contains every Lipschitz curve up to a set of 1-dimensional Hausdorff measure zero. This applies to any Banach space containing `1. We also obtain an infinite-dimensional counterexample to the Fubini theorem for the σ-ideal of σ-porous sets.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Opuscula Mathematica
سال: 2018
ISSN: 1232-9274
DOI: 10.7494/opmath.2018.38.6.859